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Abstract. We implement a Chern-Simons (CS) contribution into the compact QED3 description of the
antiferromagnetic Heisenberg model in two dimensions at zero temperature. The CS term allows for the
conservation of the SU(2) symmetry of the quantum spin system and fixes the flux through a plaquette
to be a multiple of π as was shown by Marston. We work out the string tension of the confining potential
which acts between the spinons and show that the CS term induces a screening effect on the magnetic field
only. The confining potential between spinons is not affected by the CS flux. The strict site-occupation by
a single spin 1/2 is enforced by the introduction of an imaginary chemical potential constraint.

PACS. 75.10.Jm Quantized spin models – 11.10.Kk Field theories in dimensions other than four – 11.15.-q
Gauge field theories – 11.25.Mj Compactification and four-dimensional models

1 Introduction

Quantum phase transitions of matter near zero tempera-
ture have attracted much interests in the recent past. A
possible mechanism for high-Tc superconductivity may be
a transition between an antiferromagnetic Néel phase and
a valence-bond-solid (VBS) phase, see f.i. reference [1].
Frustrated Heisenberg interactions can be mapped into a
non-linear sigma model from which it is shown that topo-
logical defects play an important role in the spinon decon-
finement through the phase transition from a Néel phase
to a VBS phase [2]. We shall introduce below gauge the-
ories which cannot predict such kind of phase transitions
in non-frustrated Heisenberg models.

At low energy non-frustrated Heisenberg Hamiltonian
can be reduced to Dirac actions. Indeed, a gauge field
formulation of the antiferromagnetic Heisenberg model
in d = 2 dimensions leads to a quantum electrody-
namic QED3 action for spinons [12]. It was shown
through a renormalization group study of compact (2+1)-
dimensionnal Maxwell electrodynamics coupled to fermion
field with SU(N) symmetry that the fermions cannot de-
confine when N is lower than 20 [23]. This is of peculiar
interest for the QED3 description of the non-frustrated
Heisenberg model. Indeed, in the latter case the number
of replica is N = 2 which implies that the spinons will
not deconfine and the Heisenberg model will not present
a paramagnetic phase (i.e. no VBS phase). We shall pro-
vide here arguments which agree with [23] and are based
on the introduction of a Chern-Simons term into to com-

a e-mail: rdillen@skku.edu

pact QED description of the non-frustrated Heisenberg
models.

We consider the π-flux state approach introduced by
Affleck and Marston [3,4]. In this description it was shown
that the flux through a plaquette formed by four spin sites
must be equal to multiples of π in order to satisfy the
projection properties of the loop operator [5]. The flux
can be strictly fixed to kπ where k is an integer by means
of a Chern-Simons (CS) term. We introduce such a term
here in order to fix the flux and assure the conservation
of the SU(2) symmetry of the quantum spin system.

It is well known that in compact Maxwell theory
Dirac magnetic monopoles (instantons) in (2+1) dimen-
sions lead to confinement of test particles [13]. The ques-
tion now arises about the effects produced by the intro-
duction of a Chern-Simons term in the compact π-flux
description of the Heisenberg interaction. We shall review
well known results which lead to the conclusion that the
flux through a plaquette controled by the CS term, screens
only the magnetic field between spinons but does not af-
fect the confining potential.

In the present approach the spin site-occupation is
strictly fixed to one through the introduction of an imagi-
nary chemical potential [6] avoiding the introduction of a
Lagrange multiplier term [7].

The outline of the paper is as follows. In Section 2
we recall the main steps of the QED3 formulation of the
two-dimensional antiferromagnetic Heisenberg model. A
justification for the implementation of the CS term is given
and the modification induced by the presence of instantons
is discussed. Section 3 deals with the derivation of the
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instanton action. In Section 4 the string tension of the
potential between spinons is worked out.

2 Flux constraint in the presence
of topological defects

Heisenberg quantum spin Hamiltonians of the type

H = −1
2

∑

i,j

JijSiSj (1)

with antiferromagnetic coupling {Jij} < 0 can be mapped
onto Fock space by means of the transformation S+

i =
f †

i,↑fi,↓, S−
i = f †

i,↓fi,↑ and Sz
i = 1

2 (f †
i,↑fi,↑ − f †

i,↓fi,↓)
where {f †

i,σ, fi,σ} are anticommuting fermion operators
which create and annihilate spinons with σ = ±1/2. The
projection onto Fock space is exact when the number of
fermions per lattice site verifies

∑
σ=±1/2

f †
i,σfi,σ = 1. This

is enforced here by using the Popov and Fedotov proce-
dure [6,7] which introduces the imaginary chemical poten-
tial µ = iπ/2β at temperature β−1.

The Hamiltonian given by equation (1) is invariant
under SU(2) symmetry and also under the U(1) gauge
transformation

fi,σ → fi,σe
igθi (2)

In 2d space the Heisenberg interaction can be written in
terms of a π-flux mean-field Hamiltonian for which the
mean-field flux φmf through a square plaquette of four
spin sites is given by

φmf = g
∑

〈ij〉∈�
(θi − θj) = πm

where θi is the gauge phase appearing in the gauge trans-
formation (2) and m is an integer. The π-flux mean-
field ansatz keeps the Hamiltonian (1) invariant under
SU(2) symmetry transformations. The dispersion relation
of the π-flux mean-field Hamiltonian shows two indepen-
dent nodal points. Near these nodal points the disper-
sion relation is linear with respect to the momentum vec-
tor [12].

In the neighbourhood of the nodal points and at low
energy the Hamiltonian (1) can be rewritten in terms of
a four-component Dirac spinon action in the continuum
limit [8–10]. This action describes a spin liquid in (2+1) di-
mensions which includes the phase fluctuations δφ around
the π-flux mean field phase φmf . It has been derived in [9]
and reads

SE =
∫ β

0

dτ

∫
d2r

{
−1

2
aµ [(�δµν + (1 − λ)∂µ∂ν)] aν

+
∑

σ

ψ̄rσ [γµ (∂µ − igaµ)]ψrσ

}
. (3)

In the following we consider the zero temperature limit
β → ∞. Here aµ = ∂µθ is a gauge field generated from

the U(1) symmetry invariance of SE when ψ → eigθψ.
The bi-spinor Dirac spinon field ψ is defined by

ψkσ =

⎛

⎜⎝

f1a,kσ

f1b,kσ

f2akσ

f2bkσ

⎞

⎟⎠

where f †
1,k,σ and f1,k,σ (f †

2,k,σ and f2,k,σ) are fermion cre-
ation and annihilation operators which act near the nodal
points (π

2 ,
π
2 ) ((−π

2 ,
π
2 )) of the momentum k. Indices a and

b characterize the rotated operators
{
fa,k,σ = 1√

2
(fk,σ + fk+π,σ)

fb,k,σ = 1√
2

(fk,σ − fk+π,σ) .

The constant g in (3) is the coupling strength between aµ

and ψ. The first term corresponds to the “Maxwell” term
− 1

4FµνFµν where Fµν = ∂µaν −∂νaµ, λ is the parameter
of the Faddeev-Popov gauge fixing term −λ (∂µaµ)2 [11],
δµν the Kronecker δ, � = ∂2

τ + ∇2 the Laplacian in Eu-
clidean space-time. This form of the action originates from
a shift of the imaginary time derivation ∂τ → ∂τ + µ
where µ is the imaginary chemical potential introduced
above. It leads to a new definition of the Matsubara
frequencies of the fermion fields [6] ψ which then read
ω̃F,n = ωF,n − µ/i = 2π

β (n+ 1/4).
Fluctuations of the flux around the π-flux

mean-field are constrained by means of symme-
try considerations on the loop operator Π =
f †

i fi+exf
†
i+ex

fi+ex+eyf
†
i+ex+ey

f †
i+ey

fi. As shown by
Marston [5], only gauge configurations of the flux states
belonging to Z2 symmetry (±π) are allowed. Hence
the flux through a four-site plaquette is restricted to
φ� = φmf + δφ = {0,±π} (mod 2π). This was derived
in the following way [5]. The loop operator verifies
Π3 = Π . Defining two quantum states |u〉 = Π2|ϕ〉 and
|v〉 = (1 − Π2)|ϕ〉 where |ϕ〉 = |u〉 + |v〉 is a general
quantum state it is easy to see that 〈v|Π |v〉 = 0 and
Π2|u〉 = |u〉. From the last equality one deduces that
|u〉 can be decomposed into the eigenstates of Π with
eigenvalues ±1. The loop operator can also be rewritten
as Π = |Π |eiφ� where φ� is the total flux through the
plaquette. In order to guarantee the properties of Π the
total flux through the plaquette has to verify φ� = πk
where k is an integer. Other values are thus “forbidden”
gauge configurations.

In order to remove these configurations (φ� �= ±π) in
the case of the Heisenberg antiferromagnet a CS term is
introduced in the QED3 action in order to fix the total
flux through the plaquette. This leads to the Maxwell-
Chern-Simons (MCS) action in Euclidean space

SE =
∫ β

0

dτ

∫
d2r

{
− 1

2
aµ

[
(�δµν + (1 − λ)∂µ∂ν)

+ iκεµρν∂ρ

]
aν +

∑

σ

ψ̄rσ [γµ (∂µ − igaµ)]ψrσ

}

(4)
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where g couples the spinon field to the gauge field and
κ is the CS coefficient. Under normal conditions the CS
contribution breaks parity and time-reversal invariance.
However the CS coefficient κ can be chosen in such a way
that the variation of the CS action under a gauge trans-
formation can be an integer multiple of 2π. Indeed under
a gauge transformation aµ → aµ + ∂µΛ the variation of
the CS action can be rewritten δSCS = κ

∫
dΣµ

(
ΛF̄µ

)

where F̄µ ≡ 1
2ε

αλ
µ Fαλ. Specializing to the gauge trans-

formation Λ = (2πn/β)τ where n is an integer and only
different from zero inside a plaquette the variation of the
CS action reads δSCS = κ2πn

∫
d2rF̄0. The integration is

simply equal to the flux passing through a plaquette and
the variation of the CS action is equal to κ2πnφ�. Since
the flux must be a multiple of π the CS coefficient κ can
always be chosen such that δSCS = 2πm where m is an
integer [5]. Under this condition the variation of the CS
action no longer contributes to the path integral and the
effects of P and T symmetry breaking are avoided [5]. The
magnetic field B through a plaquette is related to the flux
constraint φ� = π(mod 2π) and can be fixed through the
CS action with such a specific coefficient κ [5,12]. More-
over states of the spin system for which the flux through
plaquettes is a multiple of π are all equivalent and con-
nected through gauge transformations. The variation of
the CS action under such gauge transformations does not
contribute to the path integral as mentioned before.

Instanton generation from the compactness of the
gauge field connects these different spin states with flux-
oids equal to 2π. In the compact QED3 description of the
π-flux mean field action the symmetry (Π3 = Π) of the
loop operator remains unbroken. The flux through a pla-
quette φ� has to be fixed to multiples of π even in presence
of instantons. The instantons introduce a flux through the
plaquette equal to φinst = 2πq where the integer q is the
total winding charge of the instantons in the plaquette.
The flux through a plaquette is φ� = φ0 + φinst where
φ0 is the flux without instantons. It is therefore clear that
φ0 has to be fixed to multiples of π to ensure the sym-
metry of Π . Hence the Chern-Simons term is introduced
to control the fluctuations of φ0 but it does not affect the
fluctuations of the instanton density.

The compact Maxwell-Chern-Simons (MCS) action for
the Heisenberg model then reads

Scompact
E =

∫ β

0

dτ

∫
d2r

{
− 1

2
aµ [(�δµν + (1−λ)∂µ∂ν)]aν

+
∑

σ

ψ̄rσ [γµ (∂µ − igaµ)]ψrσ

}

Fµν→F̃µν

+
∫ β

0

dτ

∫
d2r

1
2
aµ

[
− iκεµρν∂ρ

]
aν (5)

where the compact version of the Maxwell and spinon ac-
tion is generated through the transformation

Fµν → F̃µν = Fµν − 2πnx,µν

where F is the electromagnetic tensor defined above in
the absence of instantons. In this transformation, nx,µν =

εµνγ∂γϕx where ϕx is the scalar potential generated
by the instanton charge qx through the Poisson equa-
tion ∆x,x′ϕx′ = qx where qx is an integer [13].

3 Instanton action with flux-controlled spinon
field

Integrating out the matter field ψ the MCS action (4)
leads to the definition of the gauge field propagator at
zero temperature [12,14]

∆E,µ,ν =
1

k2εκ(k)

(
δµν − kµkν

k2

− κ

(k2 +Π(k))
εµνρkρ

)
+

kµkν

λ(k2)2
(6)

where εκ(k) = 1+ Π(k)
k2 + κ2

k2+Π(k) is the dielectric function
induced by the matter field and flux through plaquettes, κ
is the CS coefficient as defined above and λ the Faddeev-
Popov gauge fixing parameter. In this gauge field propa-
gator Π(k) = αk is the polarization contribution at the
one-loop approximation and α = 2g2 the coupling con-
stant between the (pseudo)-electromagnetic field and the
spinon field considered here as the fermionic matter field.

Instantons appear only in the Maxwell and spinon
terms when F goes over to F̃
∫

d3k

(2π)3
εκ=0(k)

1
4
F̃µν(k)2 =
∫

d3k

(2π)3
εκ=0(k)

1
4

(Fµν(k) − 2πnk,µν)2

which leads to the partition function of the gauge field aµ

Z = Z(0) ×Zinst

where Z(0) and Zinst are respectively the bare electro-
magnetic and the instanton contribution to the partition
function. One obtains

Z(0) =
∫

Daµe
− 1

2

∫
d3k

(2π)3
aµ∆−1

µν aν .

The topological defects created by instantons through the
compactification lead to Zinst given by

Zinst =
∑

{qx}
e
− ∫ d3k

(2π)3
4π2ϕ−k(k2εκ=0(k))ϕk (7)

where ϕk is the Fourier transform of the scalar poten-
tial ϕx defined above and generated by the integer wind-
ing charges qx over which the sum is performed in equa-
tion (7). The scalar potential ϕk is related to the instanton
density ρinst(x) =

∑
xa

qaδ(x − xa) by the Poisson formula

ϕk = ρinst(k)
k2εκ=0(k) where the dielectric function εκ(k) stems

from the gauge field propagator (6).
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The partition function (7) can be put in a functional in-
tegral form [13]. Performing a Hubbard-Stratonovich (HS)
transformation on equation (7) with respect to the instan-
ton charges qa leads to

Zinst =
∫

Dχ
(
e
− ∫ d3k

(2π)3
χ(−k)

k2εκ=0(k)
4π2 χ(k)

)

×
∑

N

∑

{qa}

ξN

N !

∫ N∏

j=1

dxje
i
∑

{xa}
qaχ(xa)

(8)

where ξ is the instanton fugacity which is related to the di-
electric function through ln ξ = − 1

4π

∫
d3k

(2π)3
1

εκ=0(k)k2 . The
auxiliary field χ is generated by the HS transformation.
Following references [13–15] we assume that qa = ±1 are
the only relevant instanton charges. Then

Zinst =
∫

Dχe− 1
(2π)2

∫
d3k

(2π)3 (χ(−k)k2εκ=0(k)χ(k))

×e M2

(2π)2
∫

d3x cos χ(x)
. (9)

In this last equation M2 = (2π)2ξ induces a confining
potential between two test particles [13]. At this point it is
interesting to make a comparison of (9) with the classical
instanton action given by Polyakov. In our case the matter
field leads to the appearance of a dielectric function in
the instanton partition function. This dielectric function
induces modifications on the string tension between test
particles as it will be shown in the next section. It affects
also the dual field Hµ = εµνρFνρ.

When instantons are present in the system the H-field
is given by two terms, the bare electromagnetic field con-
tribution

H(0)
µ (k) = εµνρFνρ(k) = εµβγikβaγ(k)

and Hinst
µ which stems from the magnetic field created by

instantons

Hinst
µ =

2πikµρinst(k)
k2εκ=0(k)

.

The introduction of a matter field as well as a flux through
plaquette controlled by a Chern-Simons coefficient κ in-
duces a screening of the H-field as can be seen on the
correlation function

〈Hµ(−k)Hν(k)〉= 1
εκ(k)

(
δµν− kµkν

k2
+

κ

(k2 +Π(k))
εµνρkρ

)

+
M2

εκ=0(k) (M2 + k2εκ=0(k))
kµkν

k2

whereHµ(k) = H
(0)
µ (k)+Hinst

µ (k). In the absence of topo-
logical defects M = 0 it is easy to see that the magnetic
field is screened with a characteristic length 1/κ in agree-
ment with [20]. In the case M �= 0 the photons are mas-
sive [13] and the photon mass M is not affected by the
Chern-Simons term. From this result we anticipate that
the string tension between spinons will not be affected by
the Chern-Simons term (i.e. the flux tied to each spinon
and proportional to 1/κ).

4 String tension between two test particles

The effective potential between two test particles can be
obtained from the Wilson loop [17]. Given a loop con-
tour C, the Wilson loop is a gauge invariant W (C) =
〈e−

∮
C

dxµaµ(x)〉 and leads to the potential V (R) = − lim
T→∞

1
T lnW (C) [18] where R and T are the lengths of the loop
C in the xy plane. If the potential is not confining the
logarithm of the Wilson loop is proportional to T + R,
this is the so called perimeter law, and if the potential is
confining it leads to the area law lnW (C) ∝ RT .

We shall now show that when a matter field is present
the Wilson loop follows the area law but the string tension
is reduced by screening effects.

The Wilson loop operator can be rewritten W (C) =
〈ei

∫
HµdSµ〉 = 〈ei

∫
H0

µdSµ〉Z(0) × 〈ei
∫

Hinst
µ dSµ〉Zinst where

the H-field has been separated into the bare gauge field
and the instanton H-field contributions. The average over
the bare gauge field leads to the screened [12,19] Coulomb
interaction and will be disregarded here. The second av-
erage leads to the instanton confining potential which is
of interest here. The Wilson loop with respect to the in-
stanton action reads

Winst(C) = 〈e−
∮

C
dxµaµ(x)〉inst

= 〈e−
∫

x∈C
dSµHinst

µ (x)〉inst

=
∫

Dχe− 1
(2π)2

∫
d3k

(2π)3 ([χ−k−η−k]k2εκ=0(k)[χk−ηk])

×e M2

(2π)2
∫

d3x cos χ(x) (10)

where 〈. . . 〉inst stands as an average induced by the in-
stanton partition function Zinst. In equation (10) η(−k) =∫
dSx

2πikµ

k2εκ=0(k)e
ik.x and Hinst

µ (k) is given in Section 3.
The Wilson loop can be approximated by the classical

solution χcl obtained by a saddle-point method on the
functional integral (10) and in the limit R, T → ∞ one
gets the classical solution

χcl(k) =
−2πikze

−ikzz.(2π)2δ(kx)δ(ky)
(k2εκ=0(k) +M2)

. (11)

Here we assumed that χcl is sufficiently small so that
cosχcl ∝ 1 − 1

2χ
2
cl leading to equation (12). The intro-

duction of χcl(k) into (10) leads to

Winst(C) = e
−g2RT(−∂2

z)
(

F
[

1
k2εκ=0(k)

]

z
−F

[
1

k2εκ=0(k)+M2

]

z

)

(12)
where F [f(k)]z =

∫
dk

(2π)e
ikzf(k) is the Fourier transform

with respect to the variable z (see Appendix A).
In the strong coupling limit αk � k2 and k2εκ=0(k) =

kα. In this case the string tension reads

σs 	 g2M2

α2
.

It was shown in [21] that the absence of a matter field leads
to a string tension σ = Mg2/4π. One sees that a finite
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matter field coupled to the electromagnetic field through
α affects the string tension and screens the coupling be-
tween test particles [15]. The Chern-Simons term no longer
affects the confining mass M in this treatment of the non-
frustrated Heisenberg model. Each spinon is tied to a flux
proportional to 1/κ [22]. However the instanton flux is in-
dependent of the symmetries underlying the Heisenberg
model, in other words it is not controlled by κ. The topo-
logical charges of instantons are not altered by the spinon
flux 1/κ. This leads to a string tension unaffected by the
CS flux but screened by matter field. The spinons remain
confined and lead to the absence of paramagnetic phase in
the non-frustrated Heisenberg model at zero temperature,
with respect to this treatment.

5 Conclusion

We mapped a two dimensional Heisenberg Hamiltonian on
an (2+1)-dimensional compact quantum electrodynamic
Lagrangian with a Maxwell-Chern-Simons term at zero
temperature. Here the spin site-occupation constraint is
rigorously fixed by means of an imaginary chemical poten-
tial term[6,7] which avoids the use a Lagrange multiplier
constraint.

By symmetry consideration on a loop operator formed
with the fermion operator describing the spin around a
plaquette it is shown how a Chern-Simons term enter the
QED3 description of the Heisenberg interaction. The flux
through the plaquette is fixed to multiples of π in order to
enforce SU(2) symmetry on the Heisenberg interaction.
The Chern-Simons action is introduced after taking the
compact version of the Maxwell-Spinon action in order to
control the flux through plaquettes formed by the spins.

We worked out the string tension of the confining po-
tential which acts between the spinons and showed that
the CS term induces a screening effect on the magnetic
field. The confining potential between spinons is affected
by the matter field alone.

In conclusion we addressed the question about the
possibility of controlling the deconfinement of spinons
through flux affixed to them and proportional to the
inverse of the Chern-Simons parameter κ. The confin-
ing string tension is not affected by the CS parameter
even though this is the case for the magnetic field. Our
treatment agrees with the fact that for an unfrustrated
Heisenberg model the spinon would not be in a deconfined
phase [23]. At zero temperature non-frustrated Heisenberg
systems should not present a paramagnetic phase.

A better treatment would be to take the matter-
screened instanton flux φinst into account and fix to mul-
tiples of π the total flux through plaquette φ�. This
could possibly lead to consider instanton configuration
with winding charge greater than one as well as a string
tension depending on the spinon flux 1/κ.

Appendix A

In the case of strong coupling αk � k2 the dielectric func-
tion reads k2εκ(k) = k

(
α+ κ2/α

)
and one gets

F

[
1

k2εκ=0(k)

]

z

=
1
α
iθ(z)

F

[
1

k2εκ=0(k) +M2

]

z

=
1
α
iθ(z)e−i M2

α z .

Here we choose to define the step function θ(z) as

θ(z) = 1 z > 0
0 z ≤ 0.
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